Parallel Device-Independent Quantum Key Distribution

Rahul Jain
National University of Singapore Centre for Quantum Technologies (CQT)

Based on R. Jain, C. Miller, Y. Shi, "Parallel Device-Independent Quantum Key Distribution," (arXiv:1703.05426)

Device-Independent Protocols

Quantum Key Distribution [VV_{12}, MS_{14}, AVR16]
classical channel

Device-Independent Protocols

Quantum Key Distribution [VV_{12}, MS_{14}, AVR16]
classical channel

Device-Independent Protocols

Quantum Key Distribution [VV12, MS14, AVR16]

Device-Independent Protocols

Quantum Key Distribution [VV12, MS14, AVR16]

0100010

111..
000..
000..

0100010

Device-Independent Protocols

Question: What are minimal assumptions for DI-OKD?

Current assumptions [VV12, MS14, AVR16]:

1. No information leakage from labs.
2. Random inputs are generated and revealed sequentially.

Device-Independent Protocols

Question: What are minimal assumptions for DI-OKD?

Current assumptions [VV12, MS14, AVR16]:

1. No information leakage from labs.
2. Random inputs are generated and revealed sequentially.

Device-Independent Protocols

Question: What are minimal assumptions for DI-OKD?

Current assumptions [VV12, MS14, AVR16]:

1. No information leakage from labs.
2. Random inputs are generated and revealed sequentially.

11
00

Device-Independent Protocols

Question: What are minimal assumptions for DI-OKD?

Current assumptions [VV12, MS14, AVR16]:

1. No information leakage from labs.
2. Random inputs are generated and revealed sequentially.

111
000

Device-Independent Protocols

Question: What are minimal assumptions for DI-OKD?

Current assumptions [VV12, MS14, AVR16]:

1. No information leakage from labs.
2. Random inputs are generated and revealed sequentially.

111..
000..

Device-Independent Protocols

Our work: Proof of OKD with parallel inputs.

- No need for instantaneous input generation or security within labs.
- Simplifies experiment.

Robust, with a positive key rate.

First Attemps

The Magic Square Game

The game is won if:
Random row number

The Magic Square Game

The game is won if:
Random row number
(1) The overlap square matches.
(2) Alice's parity is even.
(3) Bob's parity is odd.

I-

 number

$$
\begin{array}{ll}
w_{c}(\text { MAGIC })=8 / 9 & \text { (classical) } \\
w(\text { MAGIC })=1 & \text { (quantum) }
\end{array}
$$

	1	
	1	
	1	

The Magic Square Game

The Magic Square game is rigid [Wu16].

Near-optimal expected score => near-perfect key bit pair!

Parallel QKD?

1. Alice and Bob play Magic Square N times in parallel.
2. They share their inputs.
3. They share a few chosen key bits; if win avg. too low, abort.
4. Information reconciliation \& privacy amplification on key bits.

For security, it would suffice to show that Alice's raw key bits are exponentially unpredictable to Eve.

A 3-Player Game

The game is won if:
(1) MS conditions hold, and
(2) $\mathrm{K}_{\mathrm{i}}=$ Alice's ith key bit for all i.

Does the probability of winning this game vanish exponentially?

$A_{1} A_{2} \ldots A_{N}$
$B_{1} B_{2} \ldots B_{N}$
$\mathrm{K}_{1} \mathrm{~K}_{2} \ldots \mathrm{~K}_{\mathrm{N}}$

Interlude: Parallel Repetition of Nonlocal Games

The Problem With Parallel

The CHSH game ${ }^{(*)}$ satisfies $w_{c}(\mathrm{CHSH})=3 / 4$.

(*): Binary game, won if $A \oplus B=X \wedge Y$

The Problem With Parallel

The CHSH game ${ }^{(*)}$ satisfies $w_{c}(\mathrm{CHSH})=3 / 4$.
But $w_{c}\left(\mathrm{CHSH}^{2}\right)>=5 / 8>(3 / 4)^{2}!!$

There's a strategy with

$$
\begin{aligned}
& P\left(W_{I} N_{1}\right)=3 / 4 \\
& P\left(W_{2} \mid W_{1}\right)=5 / 6!!
\end{aligned}
$$

(*): Binary game, won if $A \oplus B=X \wedge Y$

Is it possible that correctly guessing the outcomes of the first few rounds will allow winning all the rest?

$Y_{1} Y_{2} Y_{3} Y_{4} . . Y_{N}$

$$
X_{1} X_{2} X_{3} \ldots X_{N}
$$ $Y_{1} Y_{2} Y_{3} \ldots Y_{N}$

$B_{1} B_{2} B_{3} B_{4} \ldots B_{N}$

The Entropy Defense

[Raz 84, Chailloux+ 14, Jain+ 14, Chung+ 15, Bavarian+ 15]

Let G be a free game (product distribution on inputs).

The Entropy Defense

[Raz 84, Chailloux+ 14, Jain+ 14, Chung+ 15, Bavarian+ 15]

Let G be a free game (product distribution on inputs).

For randomly chosen rounds j, k,

$$
x_{1} x_{2} x_{3} x_{4} x_{5} \cdots
$$

$\mathbf{P}\left(\mathrm{WIN}_{j} \mid \mathrm{WIN}_{k}\right) \leq w(G)+O(1 / \sqrt{N})$
Why: Conditioning k only reveals $\mathrm{O}(1 / \mathrm{N})$ bits of information about inputs on round j.

$$
\mathrm{A}_{1} \mathrm{~A}_{2} \mathrm{~A}_{3} \mathrm{~A}_{4} \mathrm{~A}_{5} \ldots
$$

The Entropy Defense

[Raz 84, Chailloux+ 14, Jain+ 14, Chung+ 15, Bavarian+ 15]
One can show:

$$
\mathbf{P}\left(\mathrm{WIN}_{1} \cdots \operatorname{WIN}_{N}\right) \leq C^{N}
$$

for some fixed $C<1$.

More tightly, if S is a small randomly chosen subset,

$$
\mathbf{P}\left(\mathrm{WIN}_{S}\right) \leq(w(G)+\delta)^{|S|}
$$

$$
X_{1} X_{2} X_{3} X_{4} X_{5} \cdots
$$

\downarrow

$$
\mathrm{A}_{1} \mathrm{~A}_{2} \mathrm{~A}_{3} \mathrm{~A}_{4} \mathrm{~A}_{5} \ldots
$$

$B_{1} B_{2} B_{3} B_{4} B_{5} \ldots$

First Attempts (cont.)

A 3-Player Game

FIRST ATTEMPT:
Apply the entropy defense to this game.

Not a free game.

$$
\mathrm{A}_{1} \mathrm{~A}_{2} \ldots \mathrm{~A}_{\mathrm{N}} \quad \mathrm{~B}_{1} \mathrm{~B}_{2} \ldots \mathrm{~B}_{\mathrm{N}} \quad \mathrm{~K}_{1} \mathrm{~K}_{2} \ldots \mathrm{~K}_{N}
$$

A 3-Player Game

SECOND ATTEMPT:

 Have Eve guess XY and the key bits. Show$$
w\left(G^{N}\right) \ll(1 / 9)^{N}
$$

Can't get an exponential coefficient that small.

A 3-Player Game

THIRD ATTEMPT:

We know $\mathrm{P}\left(\mathrm{WIN}_{S}\right) \ll(1 / 9)^{|S|}$ for small random subset S.

Conclude that Eve's probability in OKD of guessing the S-inputs \& S-key bits is $\ll(1 / 9)^{|S|}$.

The Mirror Adversary

Collision Entropy

$\Gamma_{X E}=$ classical-quantum register
$H_{2}(X \mid E)_{\Gamma}=-\log \left[\sum_{x} \Gamma_{x}\left(\Gamma^{E}\right)^{-1 / 2} \Gamma_{x}\left(\Gamma^{E}\right)^{-1 / 2}\right]$

Idea: H_{2} measures unpredictability against the "pretty good

X measurement," $\left\{\left(\Gamma^{E}\right)^{-1 / 2} \Gamma_{x}\left(\Gamma^{E}\right)^{-1 / 2}\right\}_{x}$.
$\left(H_{\min }(X \mid E)_{\Gamma}=\right.$ unpredictability against an optimal measurement.)

An Alternative Interpretation

Suppose X was obtained from a measurement on Q.

An Alternative Interpretation

Suppose X was obtained from a measurement on Q.

Then, $2^{H_{2}(X \mid E)}$ is the guessing probability for a mirror adversary.

C

An Alternative Interpretation

Suppose X was obtained from a measurement on Q.

Then, $2^{H_{2}(X \mid E)}$ is the guessing probability for a mirror adversary.

(2) $-\frac{\text { Symmetric }}{\text { Qurification }}$

E

An Alternative Interpretation

This is good for us, because:
$\left|H_{\text {min }}^{\delta}(X \mid E)-H_{2}(X \mid E)\right| \leq O(\log \delta)$
[Tomamichel+ 08]

Interpretation: You are your own worst enemy. (Approximately.)

O

E

Our proof

A Non-Robust Result

The ith game is won if:

1. Inputs match mirror.
2. Alice's key bit matches mirror.
3. Alice and Bob win Magic Square.

For small random S .

A Non-Robust Result

Conclusion:

If Alice and Bob win Magic Square on all rounds in S, their key bits have a positive amount of min-entropy!

SUCCESS!!

(Almost)

Robustness: Sequential Case

[Miller+ 14, Dupuis+ 16]: Each time the devices lose, add a coin flip to their output.

Robustness: Sequential Case

[Miller+ 14, Dupuis+ 16]: Each time the devices lose, add a coin flip to their output.

$$
00
$$

$$
11
$$

Robustness: Sequential Case

[Miller+ 14, Dupuis+ 16]: Each time the devices lose, add a coin flip to their output.

Robustness: Sequential Case

[Miller+ 14, Dupuis+ 16]: Each time the devices lose, add a coin flip to their output.

Robustness: Sequential Case

[Miller+ 14, Dupuis+ 16]: Each time the devices lose, add a coin flip to their output.
Then, after the protocol succeeds, take the coins back.

A 6-Player Game

New rule: If Alice and Bob don't succeed at Magic Square, they still win if $\mathrm{Z}_{\mathrm{i}}=\mathrm{Z}^{\prime}{ }_{\mathrm{i}}$.

SUCCESS!!

MagicQKD

1. Alice and Bob play Magic Square N times in parallel.
2. They share inputs on εN randomly chosen rounds.
3. They share outputs on $\varepsilon^{2} \mathrm{~N}$ randomly chosen rounds; if avg. score < $1-\varepsilon$, abort.
4. Record key bits, discard the rest.

MagicQKD

Conclusions

Minimizing assumptions for QKD*

- Bell equipment (untrusted)
- Public classical channel (trusted)
- Private randomness for each player (trusted)

* Similar result as ours subsequently obtained by [Vidick 17] using "Anchored-Games".

Minimizing assumptions for QKD

Only experimental assumption:

- Information can be contained in Alice's and Bob's labs.

Minimizing assumptions for QKD

Only experimental assumption:

- Information can be contained in Alice's and Bob's labs.

0101011101
1000010110 1010100010 0101110111 1111000101 010100101.

New Frontier: Parallel Device-Independence

Known Tools:

- Quantum parallel repetition theorems for various games (XOR, unique, free, anchored, ...)
- Self-testing for parallel repeated games.

Tasks to study:

- Randomness expansion
- Universal quantum computation

Thank You !

