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Question: What are minimal assumptions for DI-QKD? 

Current assumptions [VV12, MS14, AVR16]:

1. No information leakage from labs.

2. Random inputs are generated and revealed sequentially.
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Our work: Proof of QKD with parallel inputs.

- No need for instantaneous input generation or security within labs.

- Simplifies experiment.

Robust, with a positive key rate.

Device-Independent Protocols
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The Magic Square Game
Random row number

0 1 1

1

1

1

The game is won if:
(1) The overlap square matches.
(2) Alice’s parity is even.
(3) Bob’s parity is odd.

wc ( MAGIC ) = 8/9    (classical)
w ( MAGIC ) = 1          (quantum)
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The Magic Square Game
Random row number

EPR Pairs

The Magic Square game is rigid 
[Wu16].

Near-optimal expected score 
=> near-perfect key bit pair!

0 1 1

1

1

1

”key bits.”

Random column
number



Parallel QKD?

X1X2…XN

public channel

Y1Y2…YN

B1B2…BN
A1A2…AN

1. Alice and Bob play Magic Square 
N times in parallel.

2. They share their inputs.
3. They share a few chosen key 

bits; if win avg. too low, abort.
4. Information reconciliation & 

privacy amplification on key bits.

For security, it would suffice to 
show that Alice’s raw key bits are 
exponentially unpredictable to Eve.

XY



A 3-Player Game

X1X2…XN Y1Y2…YN

B1B2…BN
A1A2…AN

X1X2…XN

Y1Y2…YN

K1K2…KN

The game is won if:
(1) MS conditions hold, and
(2) Ki= Alice’s ith key bit

for all i.

Does the probability of 
winning this game vanish 
exponentially?
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The Problem With Parallel

X1X2 Y1Y2

B1B2
A1A2

The CHSH game(*) satisfies
wc ( CHSH ) = 3/4.

But wc ( CHSH2 ) >= 5/8 > (3/4)2!!

There’s a strategy with
P(WIN1) = 3/4
P(WIN2 | WIN1 ) = 5/6!!

(*): Binary game, won if 



X1X2X3X4…XN
Y1Y2Y3Y4…YN

B1B2B3B4 …BNA1A2A3A4…AN K1K2K3…KN

X1X2X3…XN

Y1Y2Y3 …YNIs it possible that 
correctly guessing  the 
outcomes of the first 
few rounds will allow 
winning all the rest?
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[Raz 84, Chailloux+ 14, Jain+ 14, Chung+ 15, Bavarian+ 15]
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Let G be a free game (product 
distribution on inputs).



The Entropy Defense
[Raz 84, Chailloux+ 14, Jain+ 14, Chung+ 15, Bavarian+ 15]

X1 X2 X3 X4 X5 …

A1 A2 A3 A4 A5 … B1 B2 B3 B4 B5 …

Y1 Y2 Y3 Y4 Y5 …

Let G be a free game (product 
distribution on inputs).

For randomly chosen rounds j, k,

Why: Conditioning k only reveals 
O ( 1/N) bits of information about 
inputs on round j.



One can show:

for some fixed C < 1.

More tightly, if S is a small 
randomly chosen subset,

The Entropy Defense
[Raz 84, Chailloux+ 14, Jain+ 14, Chung+ 15, Bavarian+ 15]

X1 X2 X3 X4 X5 …

A1 A2 A3 A4 A5 … B1 B2 B3 B4 B5 …

Y1 Y2 Y3 Y4 Y5 …





A 3-Player Game

X1X2…XN Y1Y2…YN

B1B2…BN
A1A2…AN

X1X2…XN

Y1Y2…YN

K1K2…KN

FIRST ATTEMPT:
Apply the entropy 
defense to this game.

Not a free 
game.



A 3-Player Game

X1X2…XN Y1Y2…YN

B1B2…BN
A1A2…AN

0

Y1Y2…YN

K1K2…KN

SECOND ATTEMPT:
Have Eve guess XY and
the key bits.  Show

Can’t get an 
exponential 
coefficient 
that small.

X1X2…XN



A 3-Player Game

X1X2…XN Y1Y2…YN

B1B2…BN
A1A2…AN

Y1Y2…YN

K1K2…KN

X1X2…XN

S

THIRD ATTEMPT:
We know P(WINS) << (1/9)|S| for 
small random subset S.

Conclude that Eve’s probability 
in QKD of guessing the S-inputs 
& S-key bits is << (1/9)|S|.                     





Collision Entropy

X

E

Idea: H2 measures unpredictability 
against the “pretty good 
measurement,”                                           .

(                        = unpredictability against 
an optimal measurement.)



An Alternative Interpretation
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Suppose X was obtained from a 
measurement on Q.
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An Alternative Interpretation

Q E

Suppose X was obtained from a 
measurement on Q.

Then,                       is the guessing 
probability for a mirror adversary.

Symmetric
purification



An Alternative Interpretation

Q E

This is good for us, because:

[Tomamichel+ 08]

Interpretation:You are your own 
worst enemy.  (Approximately.)





A Non-Robust Result

X1X2…XN Y1Y2…YN

B1B2…BNA1A2…AN

Y’1Y’2…Y’N

B’1B’2…B’N

X’1X’2…X’N

A’1A’2…A’N

The ith game is won if:
1. Inputs match mirror.
2. Alice’s key bit 

matches mirror.
3. Alice and Bob win 

Magic Square.

For small random S,



X1X2…XN

public channel

Y1Y2…YN

B1B2…BN
A1A2…AN

XY

Conclusion:

If Alice and Bob win Magic Square on 
all rounds in S, their key bits have a 
positive amount of min-entropy!

SUCCESS!!
(Almost)

A Non-Robust Result



Robustness: Sequential Case
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[Miller+ 14, Dupuis+ 16]: Each time the devices lose, add a coin flip to 

their output.
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Robustness: Sequential Case

[Miller+ 14, Dupuis+ 16]: Each time the devices lose, add a coin flip to 

their output.

Then, after the protocol succeeds, take the coins back.

001.. 111..

101.. 110..



A 6-Player Game

Xi
Yi

BiAi

Y’i X’i

A’i
B’i

Zi Z’i

New rule: If Alice and 
Bob don’t succeed at 
Magic Square, they still 

win if Zi=Z’i.

SUCCESS!!

bits



MagicQKD

X1X2…XN

public channel

Y1Y2…YN

B1B2…BN
A1A2…AN

1. Alice and Bob play Magic 
Square N times in parallel.

2. They share inputs on eN
randomly chosen rounds.

3. They share outputs on e2N 
randomly chosen rounds; if 
avg. score < 1 – e, abort.

4. Record key bits, discard the 
rest.



MagicQKD

X1X2…XN

public channel

Y1Y2…YN

B1B2…BN
A1A2…AN

1. Alice and Bob play Magic 
Square N times in parallel.

2. They share inputs on eN
randomly chosen rounds.

3. They share outputs on e2N 
randomly chosen rounds; if 
avg. score < 1 – e, abort.

4. Record key bits, discard the 
rest.

Security Statement: 
For fixed  sufficiently small,



Magic Square
Game

The Entropy 
Defense
[Raz, Chailloux+,
Jain+, …]

The Mirror
Adversary

Borrowed 
Randomness





- Bell equipment (untrusted)

- Public classical channel (trusted)

- Private randomness for each player (trusted)

Minimizing assumptions for QKD*

010.. 000..

* Similar result as ours subsequently obtained by [Vidick 17] using “Anchored-Games”.
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- Information can be contained in Alice’s and Bob’s labs.

Minimizing assumptions for QKD
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New Frontier: Parallel Device-Independence

Known Tools:
Quantum parallel repetition theorems for various games 
(XOR, unique, free, anchored, …)
Self-testing for parallel repeated games.

Tasks to study:
Randomness expansion
Universal quantum computation




